Manually create data points corresponding to piecewise polynomial.
Use create_path()
to exert full control over trajectory shape. Starting
with scalar values defined by nodes
, create_path()
integrates twice to
create continuously differentiable function.
create_path()
is the underlying function to meandr()
.
If you are trying to generate random curve, it is strongly recommended to use meandr().
create_path( n_points = 100, nodes = c(1, -1, -1, 2, 0), node_int = NULL, scale = 1 )
n_points | An integer. Controls output "resolution". (Underlying calculus is unaffected). |
---|---|
nodes | A numeric vector corresponding to 2nd derivative values. This determines the overall shape of the function. |
node_int | A numeric vector assigning x-values for nodes. Automatically placed at equal intervals if |
scale | A number. Adjusts all y-values so that max(y) = |
A tibble containing coordinates of resulting function.
#>#> # A tibble: 100 x 2 #> t f #> <dbl> <dbl> #> 1 0.01 0.000133 #> 2 0.02 0.000533 #> 3 0.03 0.00120 #> 4 0.04 0.00213 #> 5 0.05 0.00333 #> 6 0.06 0.0048 #> 7 0.0700 0.00653 #> 8 0.08 0.00853 #> 9 0.09 0.0108 #> 10 0.10 0.0133 #> # ... with 90 more rows# resembles sinusoid create_path(nodes = c(1, -1, 1, -1, 1), node_int = c(0, 0.125, 0.375, 0.625, 0.875))#> # A tibble: 100 x 2 #> t f #> <dbl> <dbl> #> 1 0.01 0.0032 #> 2 0.02 0.0128 #> 3 0.03 0.0288 #> 4 0.04 0.0512 #> 5 0.05 0.08 #> 6 0.06 0.115 #> 7 0.0700 0.157 #> 8 0.08 0.205 #> 9 0.09 0.259 #> 10 0.10 0.320 #> # ... with 90 more rows